If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.905t^2-24t+12=0
a = 4.905; b = -24; c = +12;
Δ = b2-4ac
Δ = -242-4·4.905·12
Δ = 340.56
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-\sqrt{340.56}}{2*4.905}=\frac{24-\sqrt{340.56}}{9.81} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+\sqrt{340.56}}{2*4.905}=\frac{24+\sqrt{340.56}}{9.81} $
| -16/3=-8x | | 5.71+3j=14.2 | | 5r-8=12 | | 6n-13=17 | | x+3x=6000 | | 3y+13+5y-1=180 | | 0=-12+24t-4.905t^2 | | -5/6w=-35 | | 13+16g=-99 | | -0.8x+1=-13 | | 31f+17=854 | | 3z^2-36=12 | | 6=-6x+-12 | | 12+p=4+2p | | -2/5=-5/4+c | | 100=1/x | | -6(6x+3)=-36x-18 | | (x-17)^2+(Y-19)^2=49 | | 1.15x3.2=-3.68 | | 100=1-11/2×n | | |x/7|=3 | | -2+2x=-4-4x | | 7r+3=94 | | -(5a-6)=2(3a+8) | | -8=-2/5x | | w/2+8=22 | | 5=14-4x | | 1+2x=-4-4x | | 25x^2+144x+196=0 | | 31e-5=2e+5 | | 5j-40=35 | | 1/2x+18=4x-6 |